

Impact of Hybrid-Electric Propulsion Technologies on Aircraft Operators 02/09/2020 Yorick Teeuwen Impact of Hybrid-Electric Propulsion Technologies on Aircraft Operators 02/09/2020 Impact of Hybrid-Electric Propulsion Technologies on Aircraft Operators Impact of Hybrid-Electric Propulsion Technologies on Aircraft Operators 02/09/2020 Yorick Teeuwen Impact of Hybrid-Electric Propulsion Technologies on Aircraft Operators Impact of Hybrid-Electric Propulsion Technologies on Aircraft Operators 02/09/2020 Impact of Hybrid-Electric Propulsion Technologies on Aircraft Operators Impact of Hybrid-Electric Propulsion Technologies on Aircraft Operators 02/09/2020 Impact of Hybrid-Electric Propulsion Technologies on Aircraft Operators Impact of Hybrid-Electric Propulsion Technologies on Aircraft Operators 02/09/2020 Impact of Hybrid-Electric Propulsion Technologies on Aircraft Operators Impact of Hybrid-Electric Propulsion Techno

www.adse.eu

Company introduction – ADSE

Sister company:

• Moving Dot offering ATM policy and R&D deployment services to ANSP's – using ATM experts and procedure development expertise

Company introduction – ADSE & OTIS

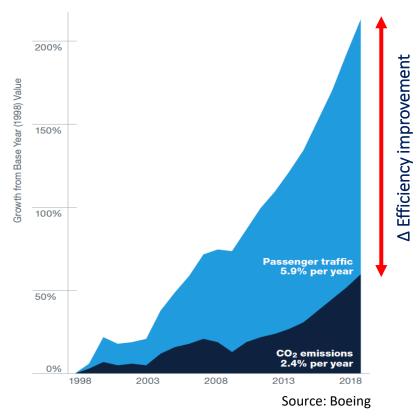
ADSE				
	ENGINEERING Design & Certification	_	SULTANCY s improvements	
Large customer base		\longrightarrow	Lots of experience	
System Engineering DNA		\longrightarrow	Holistic	view
Active across the whole development cycle		\longrightarrow	From concept to validation	
Excellent integr	ator of knowledge with high r	regard to sta	ikeholder b	ehavior and interest

Operator Technology Impact Simulator

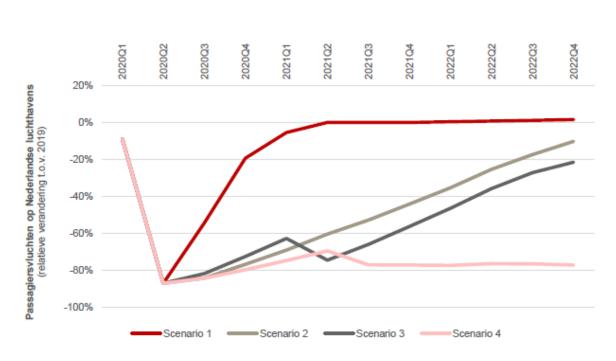
Numerical coupling of Design, Operation and Climate

ADSE experts in the loop for critical assumptions and analysis

Content



- Need for disruption in aviation
- Our look on realistic innovation
- Our solution for modeling the effects of innovation
 - Operator Technology Impact Simulator (OTIS)
 - Case study
- Conclusion



Sustainable aviation growth

 Historically traffic growth has been larger than the improvement in efficiency -> call for disruption

Bron: SEO Economisch Onderzoek

- COVID-19 has dampened aviation growth, but for how long?
 - In 3 out 4 scenario's aviation has not recovered fully by 2023
 - But in 10 years....
 - COVID-19 has increased aviation's per pax km CO2 production!

OK a disruption in the aviation sector?

Electrification of aircraft – across the spectrum

- A lot is happening regarding electric flight worldwide disruption or evolution?
- ADSE takes a <u>realistic view</u> at what is possible and what is needed to make this happen: factual w.r.t physics, credible w.r.t scenarios and assumptions

Flying taxis: Uber partner reveals design

Uber on track to deliver aerial rideshare network by 2023 as manufacturer Bell Helicopter unveils full-scale model in Las Vegas

A Aerial rideshare ambition ... an artist's rendering of Bell Helicopter's Nexus in the air. All photographs: Bell Helicopter

London-Paris electric flight 'in decade'

Eviation Aircraft

Eviation: A nine-passenger all-electric aircraft Courtesy Eviation Aircraft

Aviation behemoth Boeing has invested in Seattle-based startup Zunum Aero

Technology

Sources: BBC news, Guardian, CNN

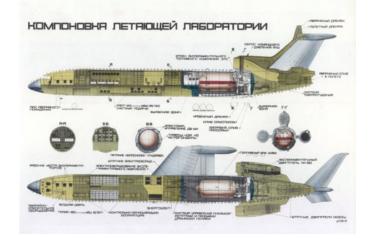
Electrification of aircraft – across the spectrum

London-Paris electric flight 'in decade'

Technology

- A lot is happening regarding electric flight worldwide disruption or evolution?
- ADSE takes a <u>realistic view</u> at what is possible and what is needed to make this happen: factual w.r.t physics, credible w.r.t scenarios and assumptions

Eviation: A nine-passenger all-electric air Courtesy Eviation Aircraft Aviation behemoth Boeing has invested in Seattle-based startup Zunum Zunum Aero



Modification/retrofit of existing aircraft as a realistic first step to certifiable innovation.

Basis to de-risk program decisions for future programs/new versions

- ADSE believes candidates to offset aviation emissions in the present to near term to be:
 - Sustainable aviation fuels (Plant based, green H₂)
 - Operational improvements -> routing to minimize climate impact
 - Increased use of electrification -> More Electric Aircraft
- Likely mid term candidates, that require modest adjustment of the aviation arena are:
 - H₂ combustion in gas turbine
 - Improved propulsion architecture, propellers & Boundary Layer Ingestion (BLI)
 - Initial electrification of the aircraft drive train

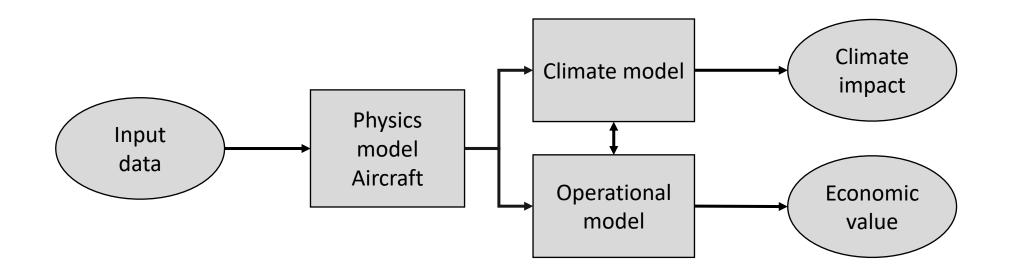
Modest innovations on the short term – Demonstratable

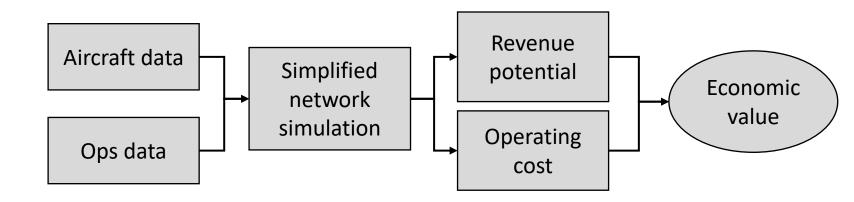
- These low impact, realistic innovations are interesting to examine, from an Operators point of view:
 - What does adjusting the routing for minimal climate impact mean for the operations?
 - How does an innovation in propulsion architecture translate to operational cost and revenue potential?
 - How does the utilization of an aircraft impact the Operator?

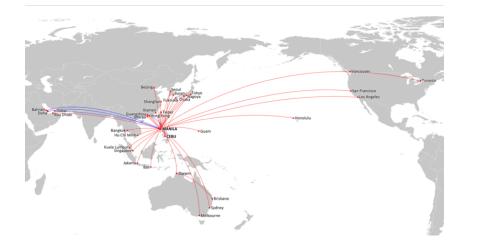
Operator Technology Impact Simulator

Operator Technology Impact Simulator, OTIS

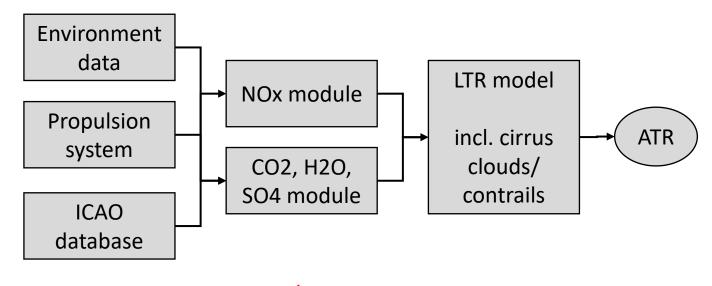
- OTIS high level modelling structure and working
 - Overall
 - Operations module
 - Climate module
- Case study BLI
- Results
- Conclusion OTIS and Electric Aviation

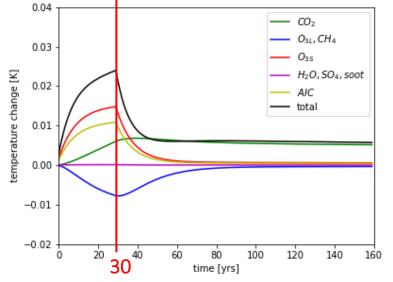





High over architecture:

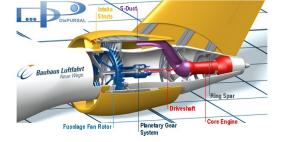
Operator Technology Impact Simulator - Operations



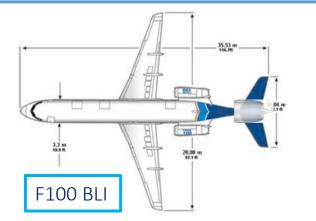


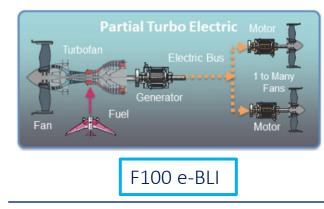
- Utilization e.g. under change in flight speed, or battery charging time.
- Aircraft performance e.g change in max range, multihops, more max range missions.
- Revenue management e.g load factor or ticket price.

- Average Temperature Response (ATR)
- Climate integrated over lifetime and beyond (500 yrs)
- Flight height and speed
- LTR model from Stanford [1]

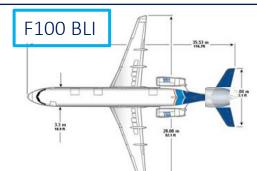

^[1] Dallara, E. & Kroo, I.. (2011). Aircraft Design for Reduced Climate Impact. 1-20. 15 10.2514/6.2011-265.

Several BLI projects going on worldwide – various organizations working on it in US and Europe

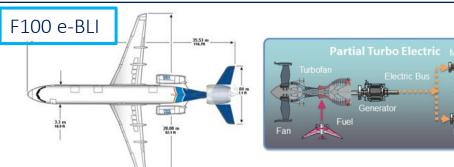



 Baseline aircraft chosen to be the Fokker F100 based on Fokker heritage – OTIS aircraft design and performance inputs modeled using AdAstra, other inputs current best estimates

Parameter	Value		
Pax capacity [-]	109		
Total PL capacity [kg]	11740		
Max. range @ max payload			
[NM]	1130 (2093 km)		
Delivery price (new) [\$]	60M		
OEM [kg]	25000		
MTOM [kg]	44450		
Annual avg. availability [-]	95%		
Avg. block time [hr]	1.5		
Avg. turnaround time [hr]	0.67		
Engine [-]	2x Tay-650		
TO thrust (Total) [kN]	67		
Engine price (new) [\$]	2.5M		

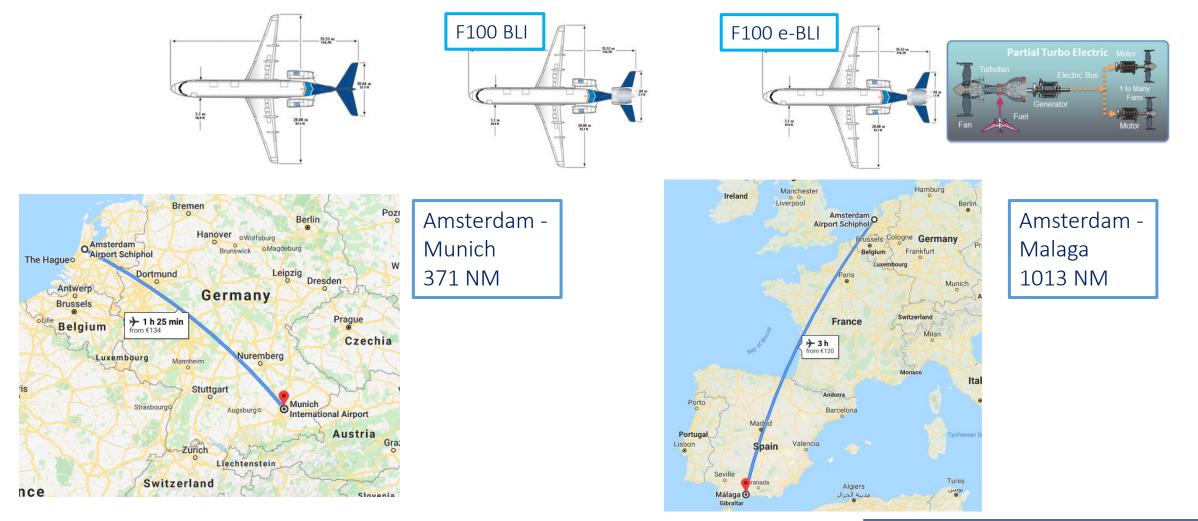

- Two variants of F100 considered for analysis:
 - i. **F100 BLI:** An F100 augmented with BLI via an extra centerline gas-turbine engine
 - **ii. F100 e-BLI:** A turboelectric hybrid version using generators onboard driving an electrically driven fan

Case Study – Regional aircraft with BLI


Parameter	Value		
Pax capacity [-]	109		
Total PL capacity [kg]	12090		
Max. range @ max payload			
[NM]	1047 (1940 km)		
Delivery price (new) [\$]	63M		
OEM [kg]	24650		
MTOM [kg]	44450		
Annual avg. availability [-]	94.5%		
Avg. block time [hr]	1.5		
Avg. turnaround time [hr]	0.67		
	2x 2/3 scaled Tay-650+ 1x		
Engine [-]	1/3 scaled center engine		
TO thrust (Total) [kN]	67		
Engine price (new) [\$]	2.5M		

- Adding third engine allows all engines to be scaled down to produce required overall thrust
- This leads to a net OEW reduction of ~350 kg
- BLI provides ~5% improvement in trip fuel due to wake reenergization
- Presence of third engine and related additional power transfer systems leads to increase in aircraft price
- Additional periodic maintenance on new engine yields a reduction in annual availability of aircraft by 1 day

Case Study – Regional aircraft with e-BLI


- Current electric machinery of MW capacity (e.g. generators, motors) as well as associated cabling quite heavy for aviation purposes
- This leads to a net OEW increase of ~1000 kg
- BLI improvement in fuel efficiency reduces to 4%
- New electrical fan, machinery, cabling and associated systems will lead to further increase in aircraft price ~10% as a conservative case
- Electrically driven fan may need less frequent periodic maintenance, increasing its annual availability

Value
109
11090
851 (1576 km)
66M
25650
44450
94.7%
1.5
0.67
2x 2/3 scaled Tay-650+ 1x
electric driven fan
67
2.5M

All aircraft compared on two routes:

Results - Regional aircraft with BLI

Impact on operator costs, revenue and CO2 for AMS-MUC (371 NM):

Component	F100	F100 BLI	F100 e-BLI
Pax transported [-]	109	109	109
Block fuel [kg]	2521	2369	2395
Annual revenue [\$]	33.5M	32.7M	32.8M
Total cost [\$/BH]	8914	8985	9074
Cost per flight [\$]	12034	12130	12250
Annual costs [\$]	31.85M	31.1M	31.5M
Block CO2 [kg]	7960	7486	7571
RF at year 30 [μW/m2]	3.27	3.19	3.20
ATR [µK]	1.19	1.14	1.15
Annual profit [\$]	1.65M	1.6M	1.3M

- F100 BLI and e-BLI versions both have higher depreciation and maintenance costs than F100
- Fuel costs are lower for both, although F100 e-BLI has higher fuel consumption and costs than F100 BLI
- Improvement in weight and efficiency improves fuel burn and costs, but fuel only 10-15% of total costs for short range missions
- F100 e-BLI 160 \$/BH costlier than F100, with 20% lower profit at same ticket fare

Impact on operator costs, revenue and CO2 for Amsterdam - Malaga(1013 NM):

Component	F100	F100 BLI	F100 e-BLI
Pax transported [-]	109	109	106
Block fuel [kg]	5390	5101	5165
Annual revenue [\$]	45.0M	44.7M	44.8M
Total cost [\$/BH]	6900	6864	6933
Cost per flight [\$]	19458	19356	19551
Annual costs [\$]	43.4M	42.8M	43.5M
Block CO2 [kg]	17026	16119	16321
RF at year 30 [μW/m2]	9.8	9.62	9.67
ATR [µK]	3.31	3.21	3.24
Annual profit [\$]	1.6M	1.9M	1.3M

- F100 e-BLI unable to transport same payload as F100 over 1000 NM
- Improvements in specific power of electric machinery for longer ranges essential for competitive operation
- Reduction in CO2 observed but not extreme due to hybrid architecture (aircraft still partly uses gas-turbines)

Conclusions

- Hybrid-electric flight can reduce carbon emissions but needs to be matched to practical and realistic insights from integrator and operator perspectives
- The Operator Technology Integrator Simulator is an excellent tool for assessing innovations in aircraft design – showing the Operator direct implications
- Lot of work still needed to achieve aircraft that can out-compete conventional aircraft – light weight and more efficient integration in aircraft designs
- Challenge to get 'clean' aircraft with same payload-range capabilities practical combinations only possible with right development in technologies
- Hybrid-electric aircraft will not be cheaper than current aircraft neither to buy nor to operate (at least not in the beginning)

For 20 years, we make it work

EXPERTISE	IMPROVEMENTS	SOLUTIONS		INNOVATIONS
		ADSE		
Visit us at: www.adse.eu		Address:	Scorpius 90 Southpoint Inte	rnational
Telephone:0031 (0) 23 55E-mail:info@adse.eu			Building A 2132 LR Hoofdo The Netherland	

Thank you for your attention!