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The FUTPRINTS0 project

FuTPrINT50 is an EU funded collaborative research project set out to identify and develop technologies and configurations
that will accelerate the entry-into-service of a commercial hybrid-electric aircraft In a class of up to 50 seats by 2035/40.

FuTPRINT50 focuses on energy storage, energy recovery and the thermal management of hybrid systems. In addition to
improving existing technologies, it will research and share an open-source tool for designing new hybrid-electric aircraft,
hybrid-electric aircraft designs and reference data sets
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FUTPRINT 0

The French Alternative Energies and Atomic Energy Commission (CEA)

Ukraine
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“: Google
French public research organization with 20 000 employees

Defense and security, low carbon energies (nuclear and renewable energies), technological research for industry,
fundamental research in the physical sciences and life sciences.
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Energy storage
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Batteries

A battery is a device that converts chemical energy directly to electrical energy.

Key figures:
y tig E=V*C
e Capacity [Ah]: quantity of electricity stored: 1 Ah = 3600 A.s = 3600 C P = V¥|
* Charge/discharge rate (C-rate) [1/h]
xC is a rate that allows a battery to be charged/discharged in x hours under a constant current
* Mass, volume, temperature range, aging... _ i
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Why don’t we have electric aircrafts yet ?
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Future battery (roadmap for energy)

Energy Density (Wh/kg)
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Two competitive challenges for flying batteries

In order to fly batteries, we must (objectives):
* Decrease mass
* Increase safety

* (Without forgetting aging and TCO optimization...)

Four key architectures (constraints and decision variables):
e Mechanical architecture

e Electrical architecture

e Thermal architecture

* BMS: Battery Management System
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One optimization...

Pack optimization method
/ Fixed data ™\ s ~ Optimal decision variables

. . . Cell, thermal management technology, etc.
Decision variables* { & &Y
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(*) each decision variable is:
- restricted
- discrete, continuous or from database
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Aircraft
architecture
Energy
management
Thermal
management
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Simulation
Input signals
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- Cooling-heating techno (direct/indirect?)
- Expected lifetime (year)
- Sizing profiles :

- Pack voltage limits :

- Pelec_cver_zdh_(WJ = f(t_.ﬁ})

- Tamh_uver_Z#lhj“C} - f(tJSJ)

- Udc min

- Udc max J
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One optimization integrated into a global and complex aircraft architectures optimization
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Several battery models available...

Cin(XpnTn ) Cl,P(xp'rp't)

Solution Solution Solution
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Anode Seiaiadai Cathode
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Doyle-Fuller-Newman (DFN) lithium-ion battery model
doi: 10.1109/ACC.2014.6858858

Physical model
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Example of empirical model

Empirical model
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Dependencies
OCV = f(Teell, SOC, SOH)

Rx = f(T, SOC, SOH)




Several battery models available...

LG HG2 discharge - Ragone plot
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Several battery models available that are not satisfactory for complex optimizations

Computation time (physical and empirical) vs accuracy (3CLI and Ragone)

We propose a new reduced battery system model and sizing algorithm that we expect to be:
* Fast enough for complex optimizations

e Accurate enough: take into account power and energy performances, voltage dynamics, aging...
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Sizing parameters

Performance targets
l - List of « sizing » usage sequences at critical temperature = typical : coldest targeted temperature

- Range of pack voltages to be respected

\ Ageing protocol

- Typical usage description

(sequence of power profiles, pauses, charging phase = leading to typical ageing
- Distribution of ambient T°

- Target of durability

Application definition

Model v1 : cell reference (fixed chemistry, fixed format, fixed specs, ...)

N Model v2 : parametric model based on physic = possibility to tune chemistry,

format, loading (energy/power ratio)

Candidate cell description
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Cell model reduction

Sizing tool based on reduced electrochemical cell model

limitation : cell model for constant power profiles
Objective : very fast electrochemical model (reading in lookup table)

4 voltage
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Dynamic Empirical model
—> Cell voltage simulated for a high
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obtained at end of current
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Launching dynamic simulations
for different parameters :

- Initial SOC

- Current or power

- Temperature

-  SOH
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Several 5D matrix, giving information at end of current pulse :
Cell voltage
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Function : « Compute pulse »




e Results

* Integration in global aircraft architectures optimization
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