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Batteries basics

A battery is a device that converts chemical energy directly to electrical energy.
Key figures:
* Capacity [Ah]: quantity of electricity stored: 1 Ah = 3600 A.s = 3600 C
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Batteries basics

Pack = modules = cells

Aluminum
Crash Structure

S g Housing Tray

I Cell module with twelve
60 Ah cells

Battery Management Controller
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Why don’t we have electric aircrafts yet ?
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Jet fuel 12 kWh/kg
LiB cell 0.3 kWh/kg —> pack 0.15 kWh/kg
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Why don’t we have electric aircrafts yet ?

Safety !!
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Two competitive challenges for flying batteries

In order to fly batteries, we must (objectives):
* Decrease mass

* Increase safety

e (Without forgetting aging and TCO...)

Three key architectures (constraints and decision variables):
* Mechanical architecture
* Electrical architecture

* Thermal architecture
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One optimization...

Pack optimization method

/ Fixed data ™\ s ~ Optimal decision variables
. . . Cell, thermal management technology, etc.
Decision variables* { & &Y
- Expected lifetime (year) o Cell:
- Sizing profiles (electro-thermal) * type/chemistry/grammage and electrode area
= . f .
Petec ()= f(L.5) ° orreference Output variables (either objectives, N
Tamb_(0)= fltss)) + Cooling-heating techno ] . . .
- Sizing profiles (ageing): » Distance and material between cells, module geometry constraints or information variable)

* Module casing shape and material

» N modules in series / N modules in parallel
* N cells in series / N cells in parallel |
* ‘Architecture’ for electrics (fuses...)

Pelecﬁover724hi{W} = f(t_(SJ)
Tamb_over_lﬁlh_{"c,l = f(t_(s))
- Pack voltage limits :

- Udc min . ] ; e s
- Udc max I \ Architecture’ for safety (?) - Spedcifications are reached or not (for each
i i 2
- Module max volume, mass, voltage % fixed paramel_ters as inputs)?
Iterative simulations - Exfailurerate

- Safety constraints (no thermal
runaway propagation, DO311,
degassing or not, failure rates
requirement)

Cold source (Q, Tinput_coolant)

- Internal variables for information
- Ex Gaz pressure during thermal
BATTERY PACK MODEL runaway (info)
- Ex Module casing max T during
thermal runaway
- Ex Pack energy

\ - Ex Pack max power /

\

(*) each decision variable is:
- restricted
- discrete, continuous or from database
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Fixed data

Expected lifetime (year)
Sizing profiles (electro-thermal)
© Pa fts))
- Ty =L
sizing profiles (agein

- Ude max
Module max volume, mass, voltage
Safety constraints {no thermal
runaway propagation, DO311,
degassing or not, failure rates
requirement)

Cold source (Q, Tinput_coolant)

\_

Pack optimization method

Decision variables*
* Cell:
« type/chemistry/grammage and electrode area
* orreference
Caoling-heating techno
Distance and material between cells, module geometry
Madule casing shape and material
N modules in series / N modules in parallel
M cells in series / N cells in paralle!
“Architecture’ for electrics (fuses..)
“Architecture’ for safety (?)

Iterative simulations

BATTERY PACK MODEL

(") each decision variable s:
- restricted
- discrete, continuous or from database

Optimal decision variables
Cell, thermal management technalogy, etc.

(" Output variables (either objectives,

constraints or Information variable)

Mass
Volume

- Specifications are reached or not (for each
fined parameters as inputs)?
Ex failure rate

- Internal variables for information
Ex Gaz pressure during thermal
runaway (info)
£x Module casing max T during
thermal runaway
Ex Pack energy
Ex Pack max power

One optimization integrated into a global and complex aircraft architectures optimization

Aircraft architectures optimization tools
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Battery sizing : current situation in aircraft design studies

Simple battery models give approximated results

Only electrical performances sizing with expert rules for :
* Aging
* (Casing mass

No retroaction of safety on battery sizing

‘ We need more accurate battery models
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Electrolyte Electrical equivalent circuit model

Doyle-Fuller-Newman model (EEC)

(DFN)

» U = f(current, temperature, SoC, SoH)
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Advanced battery models : safety

/ FEM simulations
conduction through foam
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Advanced battery models: module casing mechanical model

Model design

Exp. model

FEA model

N ©
B EERERE TR RN

Analytical model

normal displacement (mm)
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Reality check

Electrolyte

Doyle-Fuller-Newman model
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Electrical equivalent circuit model
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+ Electrical
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Pack optimization method
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Multi levels optimizations
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Surrogate models and two steps sizing algorithm

MODELS

SIZING ALGORITHMS

Surrogate performances and

4 voltage

. durability model 1) Performance and durability sizing
\ K“ Voltage durability
drop |:> Initial SOC ell voltage {yaars)
Current / power s0C o
|:> T Surrogate model I: > l'n“i:: _

rarget
. «“ “ . - - * /ﬂ'son ('/ .
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emplr/cal parametric N \\

temporal simulations
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casing mechanical

; model
Module casing
Safety model mechanical model
/ luumwm
Physics considered Sonictance i T
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« Electrical | . maTiat

Performances vs aging

_______________________ Surrogate propagation model Finale o ptl mization
E —> mass vs safety
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Parametric Insulation foam conductivity "
temporal simulations
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Development of a mechanical model based on experimental tests

Objectives : .
Mechanical model validation of a battery casing under thermal runway pressure 7~ -

e Sizing validation from the Finite Elements Analysis (FEA) simulation to the analytic model \

Methodology

Analytical model

Exp. model FEA model

Model design

normal displacement (mm)
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Development of an experimental module

Requirements from CEA feedback:

* 3 bar max

e About 1 to 2 liters max

e Cubegeometry (127 mm x 127 mm x 127 mm)
e 2vents

* 1cellinthermal runway

* 30% free space inside

* Free face displacement

* Several sensors (TC, Strain gauges, pressure)

* Rapid camera
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Experimental module design

Square cube model

1. Mesh detail for the 1/8 of the square cube 3mm 4
* 3 nodes minimum in the thickness
* Analytic solution not available for the complete casing

2. FEA simulation

* Experimental designs and trade off mass

* Metal sheet of 3 mm thick
* Material : AL5454 H111

S —

i3gsass§sss
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Experimental module design

Casing design for thermal runway

e Tests with thermal runway of one cell

e Temperature sensor (TS), cell voltage measurement (V) and heating wire

Heating wire

TS
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Experimental module design

127 mm

Test plan

e 1x test under pressure with water

1 xtest up to plastic deformation
(waterproof casing)

* 1 xtest elastic limit (Final casing) t27mm

e 2X tests with thermal runway of the
cell inside
e x1 additional test with

parameters variations and
reproducibility

12th EASN International Conference| 19/10/2022 |Barcelona




FEA model of the battery casing

Results of the safety test @0.6 bar

Check of the elastic deformation
Gauge Deformations Plan surface after test

160

1297,8

DISPLACEMENT DEFORMATION

Measured (Dial indicator ) : 120 um Measured (Gauges) : 160 um/m

Displacement

=120 pm

maxi
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Finite Elements Analysis (FEA) model of the battery casing

FEA Cubic model | @0.6 bar (from experimental tests)

Area of mesurement

|
p- e
I E
Exxmax = 140 pm/m Displacement,,,,= 97 um

DISPLACEMENT DEFORMATION

FEA model 97 um FEA model 140 um/m

Measured (Dial indicator ) : 120 pm Measured (Gauges) : 160 um/m

Error 20% Error 14%
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Analytical vs FEA model of the battery casing

Square plate model

@0.6 bar

GOULD hypothesis (1994) vs FEA Analysis

* Plane stress and deformation: ¢,, =

e Linear elastic constitutive law

« Constante pressure

0,, =0

Analytic Analysis |

Field of displacement

normal displacement (mm)
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Mechanical model overview

Model design

Exp. model

gxx max

€yy max

Amax

FEA model

-

Analytical model

Battery optimization
— mass vs safety
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Before

Now

ocv
il

Only electrical performances sizing with expert rules for :

Aging

Casing mass estimation

No retroaction on safety

Reduced perform:

Analytical module
casing mechanical

- rmancs and 1
o > durability model -
. L= R
Iations _
i
|

Fast and more accurate algorithm for battery presizing
and aircraft design exploration

)

Vs

Key parameters:

Electrical performances
Temperature dependency
Aging

Safety

Casing sizing

~




THANK YOU!

boris.berseneff@cea.fr

FUTPRINTS

lionel.de-paoli@cea.fr

https://www.cea.fr/

17 avenue des Martyrs 38054 GRENOBLE, FRANCE

- —

I|||l\l\\\kk
B\
¢




Acknowledgement

The research leading to these results has received funding from the European Union’s Horizon 2020 Research and
Innovation programme under Grant Agreement No 875551.

This document and all information contained herein is the sole property of the FUTPRINTS0 Consortium or the
company referred to in the slides. It may contain information subject to Intellectual Property Rights. No Intellectual
Property Rights are granted by the delivery of this document or the disclosure of its content. Reproduction or
circulation of this document to any third party is prohibited without the written consent of the author(s).

The statements made herein do not necessarily have the consent or agreement of the FUTPRINT50 Consortium and
represent the opinion and findings of the author(s). The dissemination and confidentiality rules as defined in the
Grant Agreement apply to this document.

This project has received funding from the European Union’s Horizon 2020 Research and Innovation program
under Grant Agreement No 875551




The FUTPRINTS0 project

FuTPrINT50 is an EU funded collaborative research project set out to identify and develop technologies and configurations
that will accelerate the entry-into-service of a commercial hybrid-electric aircraft In a class of up to 50 seats by 2035/40.

FuTPRINT50 focuses on energy storage, energy recovery and the thermal management of hybrid systems. In addition to
improving existing technologies, it will research and share an open-source tool for designing new hybrid-electric aircraft,
hybrid-electric aircraft designs and reference data sets
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FUTPRINTS

The French Alternative Energies and Atomic Energy Commission (CEA)

Pologne

Ukraine

’ Google
French public research organization with 20 000 employees

Defense and security, low carbon energies (nuclear and renewable energies), technological research for industry,
fundamental research in the physical sciences and life sciences.
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Energy roadmap

Cell level:
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Mash-up of China / USA / Japan / Europe roadmaps
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