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FUTPRINTS0 selected propulsion architectures: ex CO, neutral Architecture
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Electric Power System (EPS) architecture design considerations
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Distribution voltage as a design consideration
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Main questions to be answered

 How to analyse the impact of Electric Power System (EPS) technologies in the case of a generic 50

passenger regional aircraft?
* What design specifications to be considered when designing electric power system architectures?
 How to decide about the number of components (sources and sinks)?
 What are the impact of distribution voltage on the various electric components?

* How to inform technology providers about the requirements from system level integrations?
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Design methodology for EPS

Step Il: Select a propulsion architecture
Ex1: CO2 neutral Architecture (fixed)

A

Step I: 1:Mission (fixed) and aircraft (fixed)

Step IV: Select EPS architectures
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Step V: Define design decision handles
700<Vdc<2300, Freq(electrical), RPM(fixed, variable), torque, discharge rate, topologies, power ratios, cable
parameters, Technological changes (roadmap studies),...

v

Step VI: Find the output parameters
Component tech assessment, weight, volume, efficiencies, losses, op temperatures,
cooling requirements,...

Step VII: Decide on what needs to be changed

Configuration, size, power ratios, number of components,... m—

number of packs for batteries, FC configurations

under Grant Agreement No 875551
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Retrofit: ATR72-600, Engine: PW127
Fixed MTOW, mission and thrust requirement
EMS: Hybrid TO-CL, Battery 400 Wh/kg [2035 prediction], depth of

discharge 20%

FC system: 1.2 kW/kg without TMS considerations

Range [nmi] 432
Cruise Alt [ft] 25000
Cruise Mach 0.498
MTOW [kg] 23000
OEW [kg] (baseline) 13450
PAX [kg] 5000
Block Fuel Burn [kg] 560
Total Reserve Fuel [kg] 614
Battery [kg] 3000
IHEPS [kg] 375

off-desing performance
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EPS architectures for a system with fuel cell stacks
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EPS architectures for a system with fuel cell stacks
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EPS architectures for a system with fuel cell stacks
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Obtaining the efficiency maps for the electric motor

Outputs from
high fidelity
FEM (results for design + off design)
Design variables: i —
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To:ue vs RPM - Shaft Puvwer Export look up tables
efini Shaft power T P to MATLAB
D nln? Torque High fidelity Torque vs RPM - id, iq, vd, vq
Aircraft model F"""I’_"-"E':""I RPM — motor de Voltage vs RPM - Eﬂimenf'y y
FUTPRINT50 mi architecture, » Motor Volume model Phase current vs RPM - Efficiency !
misson CONOPS, DC voltage Pole pairs a Motor maps a
Failure cases, Disdcharge current all losses vs RPM vd
EMS from battery hi | _ vq
! or FC output current Machine topology for a fixed de bus,
Electrical Machine weight motor topology,
architectures Machine volume and geometry
Thermal loss details Torque
Varation of Torque, Voltage, RPM
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VDC = Vbus
Sizing the battery packs Sizing the fuel cell stacks
Model from CEA
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Shaft Torque (Nm)
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Shaft Torque (Nm)
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Obtaining the efficiency maps for the inverter, and converter

Inverter efficiency map
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DC/DC Converter design
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DC/DC Converter design

Converter Input Parameters
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DC/DC Converter design
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DC/DC Converter design

Converter Input Parameters
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EPS architectures for a system with fuel cell stacks
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Results (EMS TO-CL)
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Results (EMS TO-CL)
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Conclusions - Contributions and lessons learnt

* Achieving a trade off studies based on component interactions and their efficiencies, power densities, and

sub-system integration considerations

* Providing roadmap for tomorrow’s developments, from detailed models that allow capturing limits in which

components cannot operate today

* Modelling platform that can include variations in the component behaviour to analyse the system and sub-

systems faced different faults and degradations
* Capturing the effect of distribution voltage

* Reducing the miscommunication between stakeholders and incompatibilities between the levels in which

component are modelled that can lead to incorrect decisions
* Evaluating Aircraft performance based on analysing and comparing variations of operating points and

efficiencies through the mission for different architectures
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SCI%TECH % 23-27 January 2023

The Impact of Multi-Stack Fuel Cell Configurations on Electrical
Architecture for a Zero Emission Regional Aircraft
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Laskaridis!
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All-electric aircraft can eliminate greenhouse gas emissions during aircraft mission, but
the low predicted energy storage density of batteries (=0.5 kWh/kg), and their life cycle, limits
aircraft pavload and range for regional aircrafi. Proton Exchange Membrane Fuel Cells
(PEMFCs) using hydrogen are explored as an alternative energy source. As the effort on
designing high power density fuel cell systems continues, a trade off study on the effect of fuel cell
configurations and the electrical conversion strategy on system efficiency, total weight, failure
cases, and reduction of power due to failures, will inform future designs. Introducing viable fuel
cell stacks and electrical configurations motivates such a trade off study, as well as concentrated
design effort into these components. In this study, multi-stack fuel cell configurations and the
selected DC/DC converters are assessed. Their impact on the required power and thrust for a
selected mission will be presented in the final paper.
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