FUTure PRopulsion and INTegration towards a hybrid-electric 50-seat regional aircraft An interactive framework to facilitate probabilistic set-based multidisciplinary design optimisation

12th EASN International Conference on "Innovation in Aviation & Space for opening New Horizons" · 18th until the 21st of October 2022

Gustavo Krupa, Andrea Spinelli, Timoleon Kipouros

Content Overview

FUTPRINT5

o	Introduction
o	Context and Motivation
o	Visualisation tool for decision-making
o	Probabilistic set-based multidisciplinary design optimisation
•	Interactive Parallel Coordinates and Scatter Plots
o	Illustrative use case
o	Future Work
o	Conclusion/take-aways

Introduction

Why probabilities?

- The concept of probability has been formalized (in Measure Theory) in 1930s by Kolmogorov.
- This means that it can be modelled by a **random variable**. Therefore, **we are not thinking** about situations akin to the toss of a coin (frequentist approach).
- We are thinking about "states or degrees of belief".
- This allows one to deal mathematically with uncertainty and risk associated with future engineering systems.

Normal or Gaussian distribution $N(\mu, \sigma^2)$

Context and Motivation

- Decision-making and analysis can benefit from this probabilistic perspective provided that the complex mathematics is "hidden" from the user.
- A recent development of a probabilistic set-based multidisciplinary optimisation methodology has demonstrated the ability to explore trade-offs when the requirements are uncertain.
- Based on this methodology, we developed a web application tool to facilitate probabilistic set-based multidisciplinary design optimisation studies.
- This tool allows the user to interactively visualise high-dimensional results using a combination of parallel coordinates and scatter plots.
- This tool is also extendable to facilitate the studies performed by different research codes, by providing a GUI and visualisation interactivity.

Visualisation tool for decision-making

- Provide interactive multi-dimensional visualisation capability
- Easy access to Uncertainty Quantification and Propagation and Sensitivity analysis methods
- Web and desktop application.
- Offers a easy way to integrate research and engineering codes. (Black-box)
- It will be released as **open-source** after the ending of the FUTPRINT50 project.

Application overview

Visualisation tool for decision-making

			CODE PD-OPT					
X PD-Opt Settings 🖞	_	INTERACTIVE PARALLEL COORDINATES	SCATTER PLOTS		CONTOUR PLOTS			
P_sat Select	Name		No Data Available	Unit	Color	Line Style		
n_exp_samples								
n_train_samples		Please Upload a csv file:	_					
Propulsion Architecture 🔸	 _	Lupiosd (0)	CLOSE OK					
Type: Architecture 1 🔻								
Climb DoH 0.9 min ma> min ma>								
Cruise Dolt <u>0.1</u> 0.9 min max Bettery Energy Density 0.1 0.9								
Motor Power Density <u>0.1</u> 0.9								

12th EASN International Conference | 20/10/2022| Barcelona, Spain

Set-based design

- Contrasted to point-based design.
- Design decisions are delayed until a better understanding of overall relations are identified.
- Disadvantage of the non-probabilistic set-based: it requires expert rules based on domain knowledge.
- Probabilistic set-based replaces the expert rules with a Statistical Model and Probabilistic Evaluation

Probabilistic Set-based multidisciplinary design optimization

1.

levels)

Requirements Expressed as Probabilistic Constraints

- **Step 1** Generate "Sets" (Hypercube of
- 2. Evaluate Sets by calculating the probability to satisfy requirements, discard undesirable and infeasible ones.

 Run MOO in surviving sets
Discard more sets from MOO results

Step 2

Visualization and Post-processing

Interactive Parallel Coordinates and Scatter Plots

- In the late 80s, researchers in computer graphics recognized a specific stream of applications as an emerging field and called it **visualisation**¹.
- Designers explore and synthesize multiple alternative solutions in a problem space (system + subsystems).
- Parallel coordinates is a widely used visualization technique for multivariate data and high-dimensional geometry.
- Parallel coordinates allows the mapping of subsets of R^n to R^2 .
- Parallel coordinates also allows users to interact with the data in many ways. (colour sets and scatter plots).

^{[1}]: Parallel Coordinates: Visual multidimensional geometry and its applications by Alfred Inselberg

Problem formulation and results

 $\min_{X} M_{fuel}, M_{NO_X}$

s.*t*:

 $M_{takeoff} \le 20,000 \ kg \ (P_{sat} \ge 0.5)$

we can potentially solve this problem for different configurations and architectures and construct tables such as:

Sets	Optimisation Input x_i				Optimisation Output y_n						Constant Parameter
Set ID	Climb h0	Climb h1	Cruise h0	Cruise h1	Take-off Mass [kg]	Burned ful mass [kg]	Emitted Nox [kg]	Battery Mass [kg]	Emitted CO [kg]	Emitted CO2 [kg]	Battery Energy density [Wh/kg]
0	0.019019	0.042392	0.176987	0.136356	18488.12	1053.11484	6.390926	885.000801	11.29786	3159.345	500
0	0.248721	0.247232	0.248985	0.246306	19570.91	1019.602066	6.012993	2001.31695	11.58773	3058.806	500
1	0.188485	0.022992	0.109803	0.252109	18830.09	1042.594753	6.223893	1237.48971	11.76279	3127.784	500
1	0.241412	0.108446	0.216049	0.453849	19924.61	1009.550187	5.852417	2365.06638	14.62732	3028.651	500
:	:	:	:	:	•	•	:	•	:	:	500
4	0.245803	0.211336	0.40778	0.24737	19992.22	1007.329279	5.831765	2434.90193	14.0391	3021.988	500
4	0.245178	0.201692	0.413797	0.008595	19258.76	1030.272815	6.050613	1678.48368	12.76141	3090.818	500
:	:	:	:	:		:	:		:		500
208	0.773123	0.41146	0.108772	0.10428	19701.79	1017.944584	5.820675	2133.85199	13.47194	3053.834	500
208	0.75259	0.252407	0.005897	0.001813	18873.93	1044.221176	6.062478	1279.70633	13.03581	3132.664	500

Problem formulation and results

 $\min_{X} M_{fuel}, M_{NO_X}$

s.*t*:

 $M_{takeoff} \leq 20,000 \ kg \ (P_{sat} \geq 0.5)$

we can potentially solve this problem for different configurations and architectures and construct tables such as:

Sets		Optimisatio	on Input x_i		Optimisation Output y_n						Constant Parameter
Set ID	Climb h0	Climb h1	Cruise h0	Cruise h1	Take-off Mass [kg]	Burned ful mass [kg]	Emitted Nox [kg]	Battery Mass [kg]	Emitted CO [kg]	Emitted CO2 [kg]	Battery Energy density [Wh/kg]
0	0.019019	0.042392	0.176987	0.136356	18488.12	1053.11484	6.390926	885.000801	11.29786	3159.345	500
0	0.248721	0.247232	0.248985	0.246306	19570.91	1019.602066	6.012993	2001.31695	11.58773	3058.806	500
1	0.188485	0.022992	0.109803	0.252109	18830.09	1042.594753	6.223893	1237.48971	11.76279	3127.784	500
1	0.241412	0.108446	0.216049	0.453849	19924.61	1009.550187	5.852417	2365.06638	14.62732	3028.651	500
:	:	:	:	:	:	•	:	:	:	:	500
4	0.245803	0.211336	0.40778	0.24737	19992.22	1007.329279	5.831765	2434.90193	14.0391	3021.988	500
4	0.245178	0.201692	0.413797	0.008595	19258.76	1030.272815	6.050613	1678.48368	12.76141	3090.818	500
:	:	:	:	:	:	:	:	:	:	:	500
208	0.773123	0.41146	0.108772	0.10428	19701.79	1017.944584	5.820675	2133.85199	13.47194	3053.834	500
208	0.75259	0.252407	0.005897	0.001813	18873.93	1044.221176	6.062478	1279.70633	13.03581	3132.664	500

Use Case Future Work

• For a reconstructed probabilistic model *f*:

$$\tilde{y}_1, \cdots, \tilde{y}_n = f(\tilde{x}_1, \cdots, \tilde{x}_i)$$

- We would like to answer questions, such as:
 - How the technology **uncertainties** modelled by parameters $\tilde{x}_1, \dots, \tilde{x}_i$ affect the outputs $\tilde{y}_1, \dots, \tilde{y}_n$? (uncertainty propagation problem)
 - What is the sensitivity of the outputs $\tilde{y}_1, \dots, \tilde{y}_n$ and its **uncertainties** to a given input, for instance, the battery power density? (technology forecasting problem)
- Also, we may be interested in the inverse problem:

$$\tilde{x}_1, \cdots, \tilde{x}_i = F(\tilde{y}_1, \cdots, \tilde{y}_n)$$

Use Case Future Work

12th EASN International Conference | 20/10/2022| Barcelona, Spain

Conclusion/take-aways

- Research codes integrated in an easy-to-use web visualisation tool can assist top-management to make decisions, without the need for specialized computational and mathematical knowledge.
- The interactive interface developed guides the user through the steps of the design methodology and the produced data is visualised to aid an informative decision-making process.
- In our illustrative case study, decision-makers are enabled to interactively explore the hybrid-electric propulsion design space while considering the impact to the figures of merit from expected improvements in the coming years of key enabling technologies.
- In this way, the feasibility of hybrid-electric aircraft can be studied from a systems perspective but maintaining the connection with more detailed trade-off studies of components of the sub-systems.

THANK YOU!

g.Krupa@cranfield.ac.uk

https://www.cranfield.ac.uk/

College Rd, Cranfield, Wharley End, Bedford MK43 0AL

Definitions

Degree of Hybridisation (DOH) is defined with a combination of two parameters: the degree of hybridisation itself h and its relative distance position x across the mission phase.

These two quantities are defined as follows:

$$h_{i} = \frac{p_{re}}{p_{rt}} \in [0,1]$$
$$x_{i} = \frac{d}{L} \in [0,1]$$

where P_{rt} is the total power (in Watts) required to sustain flight across the mission phase, of which P_{re} is the amount to be provided by electric propulsion, d is the length of the phase spanned over the total phase length L (in kilometers).

References

- 1. Singer, D. J., Doerry, N., and Buckley, M. E. (2009). What is set-based design? Naval Engineers Journal, 121(4):31–43
- Georgiades A., Sharma S., Kipouros T., & Savill M. (2019). ADOPT: An augmented set-based design framework with optimisation. Design Science, 5, E4. <u>https://doi.org/10.1017/dsj.2019.1</u>
- Spinelli, Andrea, Luchien Anderson, and Hossein Balaghi Enalou. "Application of Probabilistic principles to Set-Based Design for the optimisation of a hybrid-electric propulsion system." *IOP Conference Series: Materials Science and Engineering*. Vol. 1226. No. 1. IOP Publishing, 2022. <u>https://doi.org/10.1088/1757-899X/1226/1/012064</u>
- Spinelli, A.; Enalou, H.B.; Zaghari, B.; Kipouros, T.; Laskaridis, P. Application of Probabilistic Set-Based Design Exploration on the Energy Management of a Hybrid-Electric Aircraft. *Aerospace* 2022, *9*, 147. <u>https://doi.org/10.3390/aerospace9030147</u>
- 5. Eisenhut, D.; Moebs, N.; Windels, E.; Bergmann, D.; Geiß, I.; Reis, R.; Strohmayer, A. Aircraft Requirements for Sustainable Regional Aviation. *Aerospace* **2021**, *8*, 61. <u>https://doi.org/10.3390/aerospace8030061</u>

Acknowledgement

The research leading to these results has received funding from the European Union's Horizon 2020 Research and Innovation programme under Grant Agreement No 875551.

This document and all information contained herein is the sole property of the FUTPRINT50 Consortium or the company referred to in the slides. It may contain information subject to Intellectual Property Rights. No Intellectual Property Rights are granted by the delivery of this document or the disclosure of its content. Reproduction or circulation of this document to any third party is prohibited without the written consent of the author(s).

The statements made herein do not necessarily have the consent or agreement of the **FutPrint50** Consortium and represent the opinion and findings of the author(s). The dissemination and confidentiality rules as defined in the Grant Agreement apply to this document.

Probabilistic set-based multidisciplinary design optimization

